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The effect of nonorthogonality in the broken symmetry approach to magnetic coupling has been explicitly
considered for the first time in Hartree-Fock and a variety of DFT methods. On the basis of the results for
three different systems, representative of a variety of physical situations it is shown that the most often quoted
trend concerning the much larger degree of delocalization of magnetic orbitals obtained from DFT, as opposed
to Hartree-Fock, is not fully justified. A new and simple way to relate the overlap integral entering into the
calculation and the spin density is proposed and tested in a variety of model systems.

I. Introduction

The physical description of magnetic coupling in a broad class
of chemical compounds including organic biradicals, inorganic
complexes, and ionic solids is based on the use of the well-
known Heisenberg Hamiltonian,1,2 which for two interacting
particles with total spin angular momentaS1 andS2 may be
written as

J is referred to as the magnetic coupling constant and the
convention sign is taken in such way that positiveJ means
ferromagnetic coupling (in order to compare with other works
one may caution that some authors use 2J instead ofJ and may
or may not use the negative sign). The eigenfunctions of the
Heisenberg Hamiltonian are simply spin eigenfunctions, andJ
is directly related to the energy difference corresponding to these
eigenstates.
Attempts to relate the Heisenberg description of magnetic

interactions to the electronic structure of a given system have
been undertaken by several authors.3-6 A particular aspect
concerns the use of ab initio techniques of electronic structure
to obtain suitable approximations to the spin eigenstates involved
in the magnetic interactions and, hence, to be able to explain
the experimental value ofJ. Recently, a number of theoretical
studies have shown the power of ab initio techniques to
quantitatively describe magnetic interaction in binuclear
complexes7-14 and also in cluster models of ionic solids.15-24

It is important to stress the fact that, in all cases, the successful
description of such a delicate physical property lies in the
appropriate mapping between the Heisenberg spin eigenstates
and the suitable ab initio electronic states.
An alternative approach to the use of spin eigenfunctions has

also been proposed by Noodleman et al.25-32 This approach
makes use of an unrestricted, or spin polarized, formalism and
of a broken symmetry solution for the low-spin state. This
approach was earlier applied in the framework of XR density

functional theory. Because of the limitations of this primitive
density functional formalism, the application of the broken
symmetry approach was quite narrow. However, the apparent
numerical success of recently proposed exchange correlation
functionals prompted different groups to make use of this
approach to compute and predict the magnetic coupling constant
of different compounds.33-37 The mapping of the eigenvalues
and eigenstates of the exact nonrelativistic Hamiltonian into a
Heisenberg Hamiltonian requires the definition of a model space
expressed from localized orthogonal orbitals or the equivalent
symmetry-adapted molecular orbitals. This mapping is straight-
forward for the simplest two electrons in two atomic orbitals
problem but requires additional argumentation if more complex
cases are considered.15-24 In these cases, it is customary to
derive the relationship betweenJ and the energy difference of
pure spin states using the proper mapping. However, even for
the simplest two electrons in two atomic orbitals problem, the
correspondence is less evident when spin-unrestricted and
nonorthogonal orbitals are used. While this fact has been
properly pointed out by Noodleman26 (see also ref 32), it is
often ignored or oversimplified. For the sake of simplicity, let
us consider the case of a Cu binuclear complex or dimer. From
either Heisenberg or exact Hamiltonians it follows that the states
involved are a singlet, S, and a triplet, T, and with the definition
of the Heisenberg Hamiltonian given by eq 1, the magnetic
coupling constant may be written as

However, in the broken symmetry approach the unrestricted spin
states used are the triplet, T′, and the broken symmetry solution,
BS, and it is easy to show (vide infra) that

whereSab is the overlap integral between the magneticR andâ
orbitals of the broken symmetry solution. Despite the simplicity
of eq 3, it is often oversimplified by taking eitherSab) 0, strongX Abstract published inAdVance ACS Abstracts,September 15, 1997.

Ĥ ) -JŜ1Ŝ2 (1)

J) E(S)- E(T) (2)

J)
2(EBS - ET′)

1+ Sab
2

(3)
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orthogonal or localized limit, orSab) 1, strong delocalized limit.
Notice that the value ofJ computed assuming one or the other
limit differs by 100%. Moreover, the choice for a given limit
is more based on the proximity of experimental and calculated
values than on a rigorous physical or computational basis.33-35

Sometimes, DFT-based calculations assume the strong delo-
calized limit using as the only argument the unproven tendency
of DFT to result in magnetic orbitals that are more delocalized
than those from unrestricted Hartree-Fock (UHF) calculations.36
Other authors also use DFT formalism to determine the magnetic
coupling constant, employing again the broken symmetry
approach but assuming the strong localized limit.37 Clearly,
both limits cannot hold, and it is necessary to further investigate
this point; this is precisely the goal of the present work.
In this paper we use three different models to investigate the

effect of nonorthogonality in eq 3 by explicit computation of
the overlap integral for different methodologies that go from
the UHF to the local density approximation (LDA), passing
through some generalized gradient corrected functionals. Our
selected examples include the H-He-H model system, often
used as a benchmark, the [Cu2Cl6]2- binuclear complex, and a
cluster model representation of the La2CuO4 superconductor
parent compound. We will show that, for the systems studied,
the use of the strong delocalized limit should be avoided. In
addition, we will present a simple way to understand the effect
of nonorthogonality by showing that a qualitative relationship
between the magnitude of the overlap matrix element and the
spin density on the magnetic centers exists. If no additional
information is available, the use of the strong localized limit is
recommended.

II. The Broken Symmetry Approach, the
Nonorthogonality Problem, and Its Relationship to Spin
Density

To investigate the effect of nonorthogonality on the calcula-
tion of the magnetic coupling constant, let us summarize the
main points of the broken symmetry approach. We begin by
considering again the case of a Cu binuclear complex. As
commented above the magnetic coupling constant is related to
the energy difference associated to the singlet and triplet
electronic states. In the broken symmetry approach one starts
by using an unrestricted formalism to compute a triplet state,
T′, which can be written as

where “iA” and “jB” stand for the open shell localizedR spin
orbitals and we use T′ to specify that this is the spin polarized,
UHF, solution chosen to approach the pure triplet state defined
by T in eq 2. If spin contamination, inherent to the use of an
unrestricted formalism, is small one can assume that T′ is a
good approximation to the triplet state. In the following we
will accept that T′ is a good representation of the high-spin state.
Next, a broken symmetry solution, BS, with totalSz ) 0 is
obtained. Notice that two different BS solutions are possible
namely

Now, one realizes that the magnetic orbitals entering into the
definition of the BS solutions may be expressed as

with λ2 + µ2 ) 1
Using the two BS solutions it is possible to write the

symmetry and spin adapted configuration state function for the
spin-polarized solution approaching the singlet. As in the case
of the triplet, we use S′ to differentiate from the pure S singlet.

where 〈BS1|BS2〉 is the overlap integral between the two
nonorthogonal broken symmetry Slater determinants. Similarly,
theSz ) 0 component of the triplet state given by eq 4 may be
written as

By taking the energy expectation value of the S′ and T′ states
given by eqs 7 and 8, one has

and

which, after elimination of the unknown〈BS1|Ĥ|BS2〉 term,
permits one to write

If one further assumes that spin polarization of the closed shells
can be neglected, it is easy to show that〈BS1|BS2〉 e |〈a|b〉|2
where 〈a|b〉 is just the overlap integral,Sab, between the two
magnetic orbitals of the BS solution and eq 11 reduces to eq 3.
In the present case eq 6 can be used to show that|〈a|b〉|2 is
simply given by 4λ2µ2, but in a general case it must be exactly
computed.
Apart from the relationship betweenJ and the energies of

the triplet and broken symmetry states, the above reasoning
permits one to obtain the spin density on a given center,FA, as
arising from the BS solution. In fact

from which one obtains

and recalling that on the present simple example|〈a|b〉|2 ) 4λ2µ2
one may relate the spin density on a magnetic center to this
overlap matrix in a very simple way

This simple equation permits one to relate the effect of
nonorthogonality to the spin density on the magnetic centers.
We must point out that given the simplicity of the model used

|T′〉 ) |....iAjB〉 (4)

|BS1〉 ) |...aj b〉

|BS2〉 ) |...bh a〉 (5)

a) λiA + µjB

b) µiA + λjB (6)

|S′〉 )
|BS1〉 + |BS2〉

x2(1+ 〈BS1|BS2〉)
(7)

|T′〉 )
|BS1〉 - |BS2〉

x2(1- 〈BS1|BS2〉)
(8)

ES′ )
EBS + 〈BS1|Ĥ|BS2〉
1+ 〈BS1|BS2〉

(9)

ET′ )
EBS - 〈BS1|Ĥ|BS2〉
1- 〈BS1|BS2〉

(10)

J) ES′ - ET′ )
2(EBS - ET′)

1+ 〈BS1|BS2〉
(11)

FA ) λ2 - µ2 (12)

2λ2 ) 1+ FA

2µ2 ) 1- FA (13)

|〈a|b〉|2 ) 1- FA
2 (14)
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to derive this relationship, eq 14 has to be regarded more as a
tool of understanding the effect of nonorthogonality than as a
way to estimate the overlap integral. We will show that, in
some simple cases, eq 14 provides a quite accurate, simple, and
alternative way to take into account the nonorthogonality of
the spin orbitals entering into the BS solution. However, in
realistic systems with polarizable core, the spin polarization of
the core may be responsible for a lowering of the〈BS1|BS2〉
overlap integral, as well as for the contribution of the core to
the atomic spin densityFA. Moreover, the ab initio spin density
is calculated through the Mulliken approximation. So the use
of eqs 11 and 14 is neither equivalent nor completely reliable.
For these realistic systems, the effect of nonorthogonality has
to be investigated by explicit computation of the〈BS1|BS2〉
overlap integral.

III. Computational Details

To check which is the influence of the overlap between
magnetic orbitals into theJ value resulting from the use of the
broken symmetry approach, we present test calculations on three
different model systems. The systems chosen in the present
work are H-He-H, [Cu2Cl6]2- and La2CuO4. The first of these
examples is included because the full CI solution is available
and, hence, it has been sometimes used as a model system.37,38

The second system belongs to a broad class of complexes that
have long been used as references for experimental magneto-
structural correlations39 and, more recently,9,10,40 as reference
for very accurate ab initio calculations based on the newly
developed difference dedicated configuration interaction, DDCI,
method.9 Finally, our third example corresponds to La2CuO4,
one of the superconductor parent compounds for which methods
based on the local density approximation fail to properly predict
its antiferromagnetic order.41 This failure may be overcome
by making use of more accurate exchange-correlation func-
tionals42-46 or by applying ab initio methods to a cluster model
representation of the physical compound.16,20,21

For the first system, we have considered three different
geometries corresponding to different H-He bond distances.
Following Hart et al.38 we use 1.25, 1.625, and 2.00 Å.
Similarly, for [Cu2Cl6]2- we have chosen the planar conforma-
tion (Figure 1) for which there is experimental39 and theoreti-
cal9,10,47evidence of a weak antiferromagnetic interaction. For
comparison purposes bond distances and bond angles for
[Cu2Cl6]2- are the same used by Miralles et al. in their DDCI
study. Hence, the Cu-Cl(bridge) distance is 2.30 Å, the Cu-
Cl(ligand) 2.26 Å, and the Cu-Cl-Cu and Cl-Cu-Cl angles
are 95° and 93°, respectively. Finally, for La2CuO4 we use a
cluster model representation of the extended systems. This
cluster contains two Cu2+ cations, the bridge O2-, anion and
the 10 anions surrounding this basic unit. The resulting cluster
is [Cu2O11]18- where the charge is just to indicate that the
number of electrons correspond to that of an ionic situation.
However, we must point out that the cluster wave functions or
densities are flexible enough so as not to be biased to any

particular description. The Cu2O11 cluster is further embedded
in an appropriate environment to represent the rest of the crystal.
This environment contains two well-defined different regions.
In the first one, total ion potentials48,49 (TIPs) are used to
represent the La3+ cations near to the cluster magnetic centers
and, also, to represent the Cu2+ cations directly connected to
the cluster oxygen anions. These TIPs have a charge of either
+2 or+3, depending on whether they represent Cu2+ or La3+

cations. The second region of the environment consists of an
appropriate array of point charges placed at the ion sites and
using the parameters derived from the experimental crystal data.
A schematic representation of the Cu2O11 cluster model used
for La2CuO4 is given in Figure 2. The particular point charges
employed here are the same used by Martin,16 and the
requirement of the TIPs placed in the first region prevents an
artificial polarization of the cluster anion electrons toward the
nearest positive point charges.50 Further details concerning the
number of TIPs and point charges for La2CuO4 are described
in ref 21. The geometrical parameters were taken from
experimental crystal data, i.e.,a ) 3.7794 Å andc ) 13.2260
Å with the I4/mmmspatial group.
For each one of the different models we have computed the

magnetic coupling constant making use of the broken symmetry
approach and a variety of spin-polarized methods and rather
extended basis sets. For the H-He-H model system the basis
set was 6-31++G**, for Cu the 6-3111+g basis set was used
for both [Cu2Cl6]2- and Cu2O11, the basis set for the Cl and
bridge O of the Cu2O11 basis was 6-31G*, and 6-31G was used
for the environmental oxygen atoms of this cluster. These
methods start from quite opposite extremes. On one hand we
have the LDA approximation where the expression suggested
by Vosko, Wilk, and Nusair is used.51 The LDA is believed to
produce results that will be representative of the so-called
strongly delocalized case. On the other extreme we have the
unrestricted Hartree-Fock (UHF) method, which at first glance
will lead to the strong localized limit. To include methods that
behave somehow between LDA and UHF, we include results
from generalized gradient-corrected functionals. In particular,
we employ the Becke exchange52 with the Perdew-Wang53

correlation functional; this will be denoted by B-PW. We
consider some examples of hybrid functionals. In particular
we use the exchange Becke three-parameter functional54 again
with the PW correlation functional and also with the one
suggested by Lee et al;55 these two approaches will be

Figure 1. Schematic representation of the planar conformation of
[Cu2Cl6]2- binuclear complex.

Figure 2. Cu2O11 cluster model used to represent La2CuO4. Also shown
are the total ion potentials for the nearest La3+ and Cu2+ cations
surrounding the Cu2O11 cluster. Thick lines link cluster atoms while
thin lines link cluster atom to TIPs; small dark spheres represent Cu2+,
small light spheres La3+ cations, and large spheres O2- anions.
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abbreviated as B3-PW and B3-LYP, respectively. Finally,
following a very recent work by Martin and Illas,56 we explore
a half-and-half functional that mixes 50% of Slater and Hartree-
Fock exchange and does not include any correlation part; this
last computational model will be referred to as HFS-null.
All energy calculations have been carried out using the

Gaussian-9457 suite of programs, while overlap elements have
been computed with the aid of some local software coupled to
the HONDO-CIPSI package.58 Given the small energy differ-
ences involved, special care has been taken to control conver-
gence in the self-consistent field procedure and in the numerical
integration steps. Results reported in the next section have been
found to be stable with respect to these two numerical
parameters.

IV. Results and Discussion

To center the discussion, we report in Table 1 results for the
H-He-H model system. These include the spin density on
the magnetic center, for both|T′〉 and |BS〉 states, as obtained
from each computational method. We also include the expecta-
tion value of the total square spin operator,〈Ŝ2〉, which for |T′〉
must be close to 2.000 and for|BS〉 must approach 1.000, we
will see that for some functionals this is not the case. Finally,
we report the〈a|b〉 values computed from the different sets of
molecular, Hartree-Fock or Kohn-Sham, orbitals. These
values have been obtained after a proper corresponding orbital
transformation aimed to obtainR andâ orbitals, which taken
as couples resemble as much as possible closed shells. This
permits one to approximate the〈BS1|BS2〉 integral by|〈a|b〉|2.
Similarly, Table 2 collects the equivalent results for the two
other model systems.
From Tables 1 and 2 we see that there is a general tendency

of LDA to produce quite large overlaps. For the La2CuO4model
it is really close to the delocalized limit. However, we will
show that this cannot be interpreted as a case exhibiting strongly
delocalized magnetic orbitals but rather as the failure of LDA
to properly describe this system as antiferromagnetic. It reflects
one of the largest limitations of LDA, which predicts Mott-
Hubbard insulators to behave as metals. Apart from the LDA
approach, and to some extent the BPW one, the rest of the DFT

methods tend to produce more delocalized orbitals than UHF.
However, this tendency is quite small, and the resulting overlap
integral seldom becomes larger than 0.2 indicating that the
widely accepted tendency of DFT to produce more delocalized
orbitals is not fully justified.
Next, let us turn our attention toward the values of the

magnetic coupling constant,J, that are obtained from eq 3
considering explicitly the value of the overlap integrals and
comparing to the cases where it is taken arbitrarily as zero or
one. Also, we consider the accuracy of eq 14, which provides
an indirect way to take the nonorthogonality ofR andâ magnetic
orbitals into account. Results for H-He-H are reported in
Table 3, whereas those of the two Cu systems are reported in
Table 4. Before entering into the discussion concerning the
use of the broken symmetry approach to magnetic coupling,
we must point out that for both [Cu2Cl6]2- and Cu2O11 systems,
results from the ab initio difference dedicated CI are in rather
good agreement with experiment.10,21 For La2CuO4 the agree-
ment is even better if a nonorthogonal CI technique is used.23

These ab initio techniques are, of course, free of the problems
encountered by the broken symmetry approach.

TABLE 1: Calculated Values of Spin Density,G, and
Expectation Value of the Total Square Spin Operator,〈Ŝ2〉,
for the |T′〉 and |BS〉 States of H-He-H at Three Different
Distances. Also Given Is the Overlap between the Magnetic
Orbitals of the |BS〉 State

|T′〉 |BS〉
distance method F 〈Ŝ2〉 F 〈Ŝ2〉 〈a|b〉
1.25 UHF 1.0628 2.001 1.0240 0.945 0.2347

LDA 1.0464 2.001 0.6920 0.445 0.7447
B-PW 1.0551 2.001 0.8681 0.696 0.4549
B3-PW 1.0544 2.001 0.9274 0.793 0.4549
B3-LYP 1.0497 2.001 0.8996 0.750 0.5004
HFS-null 1.0564 2.001 0.9774 0.872 0.3573

1.625 UHF 1.0202 2.000 1.0159 0.994 0.0761
LDA 1.0118 2.000 0.9799 0.940 0.2454
B-PW 1.0173 2.000 1.0043 0.979 0.1469
B3-PW 1.0170 2.000 1.0062 0.983 0.1330
B3-LYP 1.0151 2.000 1.0015 0.976 0.1544
HFS-null 1.0175 2.000 1.0094 0.987 0.1167

2.000 UHF 1.0068 2.000 1.0062 0.999 0.0247
LDA 1.0033 2.000 1.0009 0.994 0.0777
B-PW 1.0066 2.000 1.0058 0.998 0.0403
B3-PW 1.0063 2.000 1.0054 0.999 0.0385
B3-LYP 1.0055 2.000 1.0042 0.998 0.0484
HFS-null 1.0058 2.000 1.0052 0.999 0.0382

TABLE 2: Calculated Values of Spin Density,G, and
Expectation Value of the Total Square Spin Operator,〈Ŝ2〉,
for the |T′〉 and |BS〉 States of [Cu2Cl6]2- and for the Cu2O11
Cluster Model Representation of La2CuO4. Also Given Is
the Overlap between the Magnetic Orbitals of the|BS〉 State

|T′〉 |BS〉
system method F 〈Ŝ2〉 F 〈Ŝ2〉 〈a|b〉

[Cu2Cl6]2- UHF 0.8883 2.006 0.8907 1.005 0.0086
LDA 0.4692 2.001 0.4478 0.872 0.3528
B-PW 0.4973 2.002 0.4873 0.930 0.2588
B3-PW 0.5683 2.004 0.5697 0.991 0.2193
B3-LYP 0.5630 2.004 0.5642 0.991 0.2196
HFS-null 0.7083 2.006 0.7113 1.004 0.0313

Cu2O11 UHF 0.9051 2.004 0.8983 1.003 0.0342
LDA 0.6372 2.001 0.3414 0.295 0.8280
B-PW 0.6629 2.001 0.5066 0.605 0.6082
B3-PW 0.7279 2.002 0.6932 0.943 0.2176
B3-LYP 0.7258 2.002 0.6912 0.943 0.2204
HFS-null 0.8136 2.004 0.7979 0.991 0.0861

TABLE 3: Calculated Values of -J, in cm-1, for the
H-He-H System at Three Different Distances and
Assuming That theSab Overlap Integral (cf. Eqs 3 and 11)
Is Zero, 〈a|b〉, Given Approximately by Eq 14, or Taken
as Unity

distance method
-J-

(Sab) 0)
-J-

(Sab) 〈a|b〉)
-J-

(Sab) eq 14)
-J-

(Sab) 1)

1.25 UHF 3856.4 3655.1 4053.1 1928.2
LDA 12528.7 8058.9 8236.2 6264.3
B-PW 8703.9 6676.4 6983.4 4352.0
B3-PW 7594.4 6292.4 6662.4 3797.2
B3-LYP 8392.7 6711.9 7048.4 4196.3
HFS-null 5940.2 5267.6 5686.3 2970.1
FCI 4860

1.625 UHF 424.9 422.5 439.0 212.5
LDA 1551.2 1463.0 1491.8 775.6
B-PW 903.0 883.9 910.8 451.5
B3-PW 831.2 816.7 841.6 415.6
B3-LYP 994.2 971.0 997.2 497.1
HFS-null 697.3 687.9 710.7 348.6
FCI 544

2.00 UHF 42.3 42.3 42.9 21.2
LDA 169.4 168.4 169.7 84.7
B-PW 88.2 88.0 89.2 44.1
B3-PW 82.9 82.8 83.9 41.5
B3-LYP 109.4 109.1 110.3 54.7
HFS-null 74.3 74.2 75.1 37.1
FCI 50
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Now, we will discuss the results from Tables 3 and 4 which
exhibit a clear general trend. The LDA largely overestimates
the value ofJ even after properly taking into account the
nonorthogonality. Inclusion of gradient-corrected functionals
improves somehow the behavior, but results are still far from
what can be considered qualitative agreement with either
experiment or FCI results. A further improvement is found
when using hybrid functionals, but for all systems, the calculated
values are still twice the experimental or FCI ones. We notice
that if a one assumes a strong delocalized limit, the B3-LYP
results for all systems nicely reproduce the experimental or FCI
results. On the basis of such an assumption, Ruiz et al.36 invoke
good agreement between calculated B3-LYP and experimental
results. The present analysis clearly shows that there is no
evidence for the strong delocalized behavior of B3-LYP.
Hence, good agreement between experiment and B3-LYP
results reported by Ruiz et al.36 are likely to arise from an error
cancellation resulting from the tendency of B3-LYP to over-
estimateJ by a factor of≈2 (cf. theSab ) 〈a|b〉 column of
Tables 3 and 4) and of the assumption of strong delocalization
limit. This later assumption leads toJ values that are one-half
of those arising from the strong localized limit (see eq 11). The
two effects cancel out, and good agreement with experiment is
achieved. However, we must point out again that the assump-
tion of the strong delocalized limit is not justified. From the
results in the tables it is clear that to obtain a rigorous test on
the accuracy of a given DFT method one needs to explicitly
compute theSab integral. For the simplest system, H-He-H,
quantitative agreement can be obtained by simply using eq 14,
which does not need any additional information and can be
applied by using standard output on the available codes.
However, for the more complex systems eq 14 only adds
qualitative understanding.
A final comment concerns the behavior of results obtained

using the DFT approach. This behavior may be rationalized
by making use of the well-known Hubbard model Hamiltonian.
In this approach, second-order perturbation theory leads toJ≈
t2/U, which permits one to relateJ and the parameterst andU
defining the Hubbard Hamiltonian. Then, it follows that the
changes inJ produced by different exchange-correlation func-
tionals will arise from changes in the effective parameters of

the Hubbard Hamiltonian or, more precisely, in thet/U ratio.
Let us consider the two-electron-two-center problem in the
framework of the Hubbard Hamiltonian. For this model
Hamiltonian, the energy of the UHF determinant defined in eq
5 reduces to

which has its minimum value when

Then, using eqs 12 and 16 it is easy to show that

Now, it is possible to use eq 17 to try to justify the DFT results.
From Tables 1 and 2, it may be observed that all DFT treatments
reduce this spin density of the broken symmetry solution
resulting in a broad range of values depending on the DFT
model used. For Cu2O11, for instance, the data reported in Table
2 lead tot/U ratios that are 0.22 for the UHF treatment, 0.47
for LDA, and 0.30 for the HFS-null approach. Hence, the
effect of the exchange correlation potentials may be understood
as changing thet/U ratio, i.e., the delocalization/repulsion ratio,
in a variable extent, which may be dramatically exaggerated,
as in LDA. The possible reliability of the DFT results for
determining the magnetic coupling rests on the control of this
effectivet/U ratio. These arguments may give an interpretation
to the relatively good results given by the HFS-null approach.
Similar results for a series of perovskites have been recently
reported by Martin and Illas.56

VI. Conclusions

In this work, the effect of nonorthogonality in the broken
symmetry approach to magnetic coupling has been explicitly
considered for the first time. On the basis of the results for
three different systems, representative of a variety of physical
situations, we can conclude that the most often quoted trend
concerning the much larger degree of delocalization of magnetic
orbitals obtained from DFT, as opposite to Hartree-Fock, is
not fully justified. Except for the LDA approach, explicit
calculation of the appropriate overlap integral shows that it is
not correct to assume the strong delocalization limit. In fact,
the calculated overlap integrals rarely exceed 0.2, except again
for LDA, and by B-PW although in a lesser extent. A new
simple and accurate way to estimate the overlap integral entering
into the calculation has been proposed and tested. This new
procedure only needs the spin density on the magnetic center
for the broken symmetry state, a rather standard output in most
commonly used quantum chemical codes.
Finally, we would like to briefly comment the consequences

of the present work for cases concerning more than one electron
per magnetic center. Let us consider the simplest case of two
atoms A and B, each of them bearing two unpaired electrons
in two equivalent orbitals. Again, one may obtain the UHF
solution for the high-spin state

having energyEQ. Except for the spin polarization of the core,
this state is a pure quintet, hereafter denoted by|Q〉. Moreover,
two degenerate UHF symmetry broken solutions withSZ ) 0
can be obtained. These broken symmetry solutions have energy
EBS and can be written as

TABLE 4: Calculated Values of -J, in cm-1, for [Cu2Cl6]2-

and for the Cu2O11 Cluster Model Representation of
La2CuO4 and Assuming That theSab Overlap Integral (cf.
Eqs 3 and 11) Is Zero,〈A|B〉, Given Approximtely by Eq 14,
or Taken as Unitya

system method
-J-

(Sab) 0)
-J-

(Sab) a|b〉)
-J-

(Sab) eq 14)
-J-

(Sab) 1)

[Cu2Cl6]2- UHF -45.6 -45.6 -37.8 -22.8
LDA 464.5 413.1 258.1 232.3
B-PW 333.9 312.9 189.4 166.9
B3-PW 84.3 80.4 50.3 42.1
B3-LYP 91.0 86.8 54.1 45.5
HFS-null -32.0 -31.9 -21.4 -16.0

ab initio DDCI (10) 6.0
exptl 0, 40

Cu2O11 UHF 304.1 303.8 254.9 152.1
LDA 6539.8 3879.7 3472.3 3269.8
B-PW 4774.1 3485.1 2738.5 2387.1
B3-PW 1871.8 1787.2 1231.9 935.9
B3-LYP 1883.6 1796.3 1237.4 941.8
HFS-null 840.9 834.7 616.8 420.5

ab initio DDCI (21) 787.2
ab initio NOCI (23) 967.9

exptl 970

a Fully ab initio difference dedicated CI (DDCI) results for both
systems and nonorthogonal CI for Cu2O11 are included for comparison.

EUHF ) 2λ2µ2U + 4λµt (15)

λµ ) -(t/U) (16)

t/U ) x(1- F2)/2 (17)

|Q〉 ) |...iAi′AjBj′B〉 (18)
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where orbitals a and b are linear combinations ofiA and jB,
respectively, and a′ and b′ equivalent linear combinations ofi′A
and j′B (cf. eq 6).
The |BS1〉 determinant is close to TA+ TB

-, the product of two
local triplets on atoms A and B. Here TA

+ denotes a local
triplet on atom A with SzA ) 1 and TB

- a local triplet on atom
B with SzB ) -1. Therefore, the low lying triplet state would
be

and its energy expectation value

If both 〈BS1|BS2〉 and〈BS1|Ĥ|BS2〉 (which should be small albeit
nonzero!) are simultaneously neglected, it follows that

a result that appears to be identical with that obtained from the
use of the Ising model Hamiltonian,22 provided that spin
contamination inherent to the UHF approach can be neglected.
In fact, from the Ising Hamiltonian it also follows that

which already assumes localized magnetic moments. The fact
that the broken symmetry approach (cf. eq 22) and the Ising
model Hamiltonian (cf. eq 23) lead to the same relationship
(again if spin contamination can be neglected!) is because, in
this particular case, there is anSz-eigenfunction, withSz ) 0,
which appears to be also eigenfunction of theŜ2 spin operator,
with totalS) 1. This particular triplet state is an eigenfunction
of both Ising and Heisenberg Hamiltonians. This is the reason
eqs 22 and 23 are identical. A similar approach has permitted
J to be extracted in recent solid-state calculations.59,60

However, contrary to the one electron per center case
described above, if〈BS1|BS2〉 and 〈BS1|Ĥ|BS2〉 are not ne-
glected, it is impossible to evaluate the〈BS1|Ĥ|BS2〉 quantity
from the use of the energy expectation value expression for
|Q(Sz ) 0)〉, theSz ) 0 component of the high-spin state. In
fact,

where TA
0 and TB

0 represent theSz ) 0 component of local
triplet states on A and B, respectively. The energy associated
with TA

0 TB
0, which is intrinsically multideterminantal, cannot

be approached by a UHF calculation. In this case the UHF
solution does not provide enough information for a proper,
rigorous, evaluation of the triplet state energy and, hence, of
the magnetic coupling constant.
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